Analysis comparison effect of image capture speed on rice pest detection using yolov 5 and yolov 7

Rahmanda Aldio Reza, Andik Bintoro, Teuku Multazam, Arnawan Hasibuan, Badriana Badriana

Abstract


Pest attacks are one of the main causes of declining rice production in Indonesia. To address this issue, this study examines the use of artificial intelligence-based object detection algorithms, namely YOLOv5 and YOLOv7, in a rice pest monitoring system using drones. The main focus of this study is to assess the effect of image capture speed on pest detection results, as well as to compare the performance of the two algorithms in various aspects, such as detection accuracy, speed, and effectiveness in identifying two main types of pests, namely rice stem borers and planthoppers. The applied methodology includes collecting visual datasets from the field, object annotation using Roboflow, training and testing models using the Anaconda Prompt platform, and analyzing the detected images in binary and grayscale forms using MATLAB. Performance evaluation is carried out using Intersection over Union (IoU), mean IoU (mIoU), and visual analysis of pixel heatmaps. The results show that detection speed is affected by variations in image capture height. YOLOv7 has faster processing performance than YOLOv5, with a capture time of 0.82 s–1.41 s, while YOLOv5 is in the range of 1.15 s–1.47 s. Accuracy evaluation through IoU and mIoU calculations produces consistent values in each frame. The YOLOv5 model obtained an IoU = 0.8711 and mIoU = 0.8711, while YOLOv7 also achieved an IoU = 0.8711 and mIoU = 0.8711. Both models showed a high balance of prediction areas, but YOLOv7 was superior in terms of time efficiency and performance stability at various heights. This research provides an important contribution to the development of AI-based precision agriculture systems, especially in detecting pests automatically and in real-time to improve pest control efficiency and agricultural productivity in Indonesia.


Keywords


YOLOv5; YOLOv7; Rice Pests; Object Detection; Image Processing.

Full Text:

PDF

References


A. Khumaidi and N. Hikmah, “Rancang Bangun Prototipe Pengusir Hama Burung Menggunakan Sensor Gerak Rcwl Microwave Berbasis Internet of Things,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 11, no. 2, pp. 560–567, 2021, doi: 10.24176/simet.v11i2.5071.

Buletin Konsumsi Pangan, “Buletin Konsumsi Pangan - Volume 12 Nomor 1 Tahun 2021,” Kementeri. Pertan. Republik Indones., vol. 12, no. 1, pp. 32–43, 2021, [Online]. Available: http://epublikasi.setjen.pertanian.go.id/arsip-buletin/53-buletin-konsumsi/772-buku-buletin-konsumsi-pangan-semester-i-2021

Y. Hapida, P. Biologi Fakultas Ilmu Tarbiyah dan Keguruan UIN Raden Fatah Palembang, and J. K. Zainal Abidin Fikri, “Pemanfaatan Ampas Tebu Dalam Meningkatkan Pertumbuhan Jamur Tiram Putih (Pleurotus Ostreatus) Di Kota Palembang Dan Sumbangsihnya Pada Mata Pelajaran Biologi Di Sma,” Bioilmi J. Pendidik., vol. 5, no. 1, pp. 23–28, Jun. 2019, doi: 10.19109/BIOILMI.V5I1.3508.

S. Sudarmaji and N. ’Aini Herawati, “Perkembangan Populasi Tikus Sawah Pada Lahan Sawah Irigasi Dalam Pola Indeks Pertanaman Padi 300,” J. Penelit. Pertan. Tanam. Pangan, vol. 1, no. 2, p. 125, 2017, doi: 10.21082/jpptp.v1n2.2017.p125-131.

Baehaki, “Hama Penggerek Batang Padi dan Teknologi Pengendalian,” Iptek Tanam. Pangan, vol. 8, no. 1, pp. 1–14, 2015.

L. Febriyanti et al., “Review: Uji Efektivitas Pengaruh Beberapa Ekstrak Tanaman Terhadap Mortalitas Wereng Cokelat (Nilaparvata Lugens),” Pros. Semin. Nas. Pendidik. Biol. , pp. 16–20, 2018, [Online]. Available: http://proceedings.radenfatah.ac.id/index.php/semnaspbio

R. Y. Talitha, “(PDF) Pengembangan Alat Pengendali Hama Wereng Coklat Otomatis Dengan Motion Sensor.” Accessed: Feb. 18, 2025. [Online]. Available: https://www.researchgate.net/publication/345744093_Pengembangan_Alat_Pengendali_Hama_Wereng_Coklat_Otomatis_Dengan_Motion_Sensor

H. Suharto and N. Usyati, “the Stem Borer Infestation on Rice Cultivars At Three Planting Times,” Indones. J. Agric. Sci., vol. 6, no. 2, p. 39, 2016, doi: 10.21082/ijas.v6n2.2005.p39-45.

T. N. Padilah, B. N. Sari, and H. Hannie, “Model matematis predator-prey tanaman padi, hama penggerek batang, tikus, dan wereng batang coklat di Karawang,” Pythagoras J. Pendidik. Mat., vol. 13, no. 1, pp. 52–62, 2018, doi: 10.21831/pg.v13i1.16880.

W. Yang and X. Qiu, “A Novel Crop Pest Detection Model Based on YOLOv5,” Agric., vol. 14, no. 2, 2024, doi: 10.3390/agriculture14020275.

R. F. Putra and D. I. Mulyana, “Optimasi Deteksi Objek Dengan Segmentasi dan Data Augmentasi Pada Hewan Siput Beracun Menggunakan Algoritma You Only Look Once (YOLO),” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 8, no. 1, pp. 93–103, Jan. 2024, doi: 10.35870/JTIK.V8I1.1391.

O. E. Olorunshola, M. E. Irhebhude, and A. E. Evwiekpaefe, “A Comparative Study of YOLOv5 and YOLOv7 Object Detection Algorithms,” J. Comput. Soc. Informatics, vol. 2, no. 1, pp. 1–12, Feb. 2023, doi: 10.33736/JCSI.5070.2023.

S. Ahirwar, R. Swarnkar, S. Bhukya, and G. Namwade, “Application of Drone in Agriculture,” Int. J. Curr. Microbiol. Appl. Sci., vol. 8, no. 01, pp. 2500–2505, 2019, doi: 10.20546/ijcmas.2019.801.264.

I. Hajar, A. Rifa, I. F. Alam, A. Ramadhan, and P. Rosyani, “Perancangan Sistem Sederhana Deteksi Helm Sepeda Motor dengan Metode Convolutional Neural Network Dan Algoritma YOLO v3,” vol. 3, no. 7, pp. 1796–1802, 2024.

D. Surya Pradana, B. Rahayudi, and Suprapto, “Sistem Pakar Pendeteksi Hama dan Penyakit Tanaman Mangga Menggunakan Metode Iterative Dichotomiser Tree (ID3),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 7, pp. 2713–2720, 2018, [Online]. Available: http://j-ptiik.ub.ac.id




DOI: https://doi.org/10.52626/joge.v4i2.66

Refbacks

  • There are currently no refbacks.


Journal Geuthee of Engineering and Energy is published by Geuthèë Institute.
St. Teknik II, Reumpet, Krueng Barona Jaya sub-district (23370), Aceh Besar District, Aceh Province, Indonesia.
http://geutheeinstitute.com/
ISSN (Online): 2964-2655
The published content of this journal is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons License