Forecasting of electrical energy consumption using Autoregressive Integrated Moving Average (Case Study: ULP Meulaboh Kota)
Abstract
Forecasting electricity consumption is one of the solutions that can be implemented by the ULP Meulaboh Kota to ensure the availability of sufficient electricity supply. With the continuous increase in electricity demand, the ULP faces challenges in predicting and managing electricity consumption. Uncertainty in consumption patterns can lead to imbalances between supply and demand, potentially causing various issues such as power outages, high operational costs, and customer dissatisfaction. Therefore, accurate forecasting is essential to support effective decision-making and planning. This study aims to forecast electricity consumption across five different sectors: residential, social, business, industrial, and public, using the ARIMA (Autoregressive Integrated Moving Average) method. The forecasting process involves data collection, stationarity testing using the Augmented Dickey-Fuller (ADF) test, and differencing when necessary to achieve stationarity. The ARIMA model is identified through ACF and PACF plot analysis, estimated, and tested before being used for forecasting. The results indicate that the ARIMA method provides highly accurate forecasts for all sectors, as reflected by the low Mean Absolute Percentage Error (MAPE) values. The residential sector has a MAPE of 4.3957%, the social sector 4.3757%, the business sector 3.1125%, the industrial sector 7.9937%, and the public sector 4.3646%. Overall, the forecasting error produced by the ARIMA model remains below 8%, with an average MAPE of 4.8483% across all sectors.
Keywords
Full Text:
PDFReferences
M. Sigala, A. Beer, L. Hodgson, and A. O’Connor, Big Data for Measuring the Impact of Tourism Economic Development Programmes: A Process and Quality Criteria Framework for Using Big Data. 2019.
Lambey, D. S., Amin, N., Pirade, Y. S., & Santoso, R. (2021). Analisis Konsumsi Energi Listrik Untuk Pencapaian Efisiensi Energi Di Kantor Dewan Perwakilan Rakyat Daerah Kabupaten Tojo Una-Una. Foristek, 11(2), 108–114. https://doi.org/10.54757/fs.v11i2.112
Rifais, A. (2018). Prediksi Konsumsi Energi Listrik Menggunakan Metode Jaringan Syaraf Tiruan Recurrent di PLN APJ Salatiga. 1–83.
Rajagukguk, A. S. F., Pakiding, M., & Rumbayan, M. (2015). Kajian Perencanaan Kebutuhan dan Pemenuhan Energi Listrik di Kota Manado. Jurnal Teknik Elektro Dan Komputer, 4(3), 1–11. https://ejournal.unsrat.ac.id/index.php/elekdankom/article/view/7972
Setiawan, W. (2020). Ketersediaan Suplai Energi Listrik di Indonesia. https://www.goodnewsfromindonesia.id/2020/06/23/ketersediaan-suplai-energi-listrik-di-indonesia
Syachreza Himawan, D., & Sudiarto, B. (2022). Upaya Konservasi Energi Listrik pada Universitas Indonesia Berdasarkan Metode Intensitas Konsumsi Energi. Edu Elektrika Journal, 11(2), 30–34.
Kristiana, A., Wilandari, Y., Gaussian, A. P.-J., & 2015, undefined. (2015). Peramalan Beban Puncak Pemakaian Listrik Di Area Semarang Dengan Metode Hybrid Arima (Autoregressive Integrated Moving Average)-anfis (Adaptive Neuro. Ejournal3.Undip.Ac.IdA Kristiana, Y Wilandari, A PrahutamaJurnal Gaussian, 2015•ejournal3.Undip.Ac.Id, 4, 715–723. https://ejournal3.undip.ac.id/index.php/gaussian/article/view/10125
Hasibuan, A., Afrizal, A., Fariadi, D., & Nisa, F. (2024). PERHITUNGAN SUSUT DENGAN MEMBANDINGKAN ANTARA PERHITUNGAN PT. PLN ULP LHOKSEUMAWE KOTA DENGAN PERHITUNGAN SOFTWARE ETAP SETELAH DILAKUKAN PERUBAHAN POLA OPERASI TAHUN 2023 Arnawan. 26(1), 1–10.
Prasasti, W. (2022). Peramalan Konsumsi Energi Listrik Dikabupaten Blora Pada Tahun 2022-2025 Menggunakan Metode Autoregressive Integrated …. Simetris, 16(2), 7–15. https://www.sttrcepu.ac.id/jurnal/index.php/simetris/article/view/247%0Ahttps://www.sttrcepu.ac.id/jurnal/index.php/simetris/article/download/247/157
Bandri, S. (2019). Prediksi Perkembangan Kebutuhan Energi Listrik di Unit PLN Kayu Aro. Menara Ilmu, XIII(6), 187–205.
Abdullah, D., Wandi, R., & Nasution, Z. (2021). Implementasi Metode Double Exponential Smoothing Untuk Peramalan Konsumsi Listrik Berdasarkan Pemakaian Kwh Di Pt. Pln (Persero) Ulp Natal. TECHSI - Jurnal Teknik Informatika, 13(1), 61. https://doi.org/10.29103/techsi.v13i1.3091
Dona, A. R., & Sugiman. (2021). Peramalan Metode ARIMA Data Saham PT. Telekomunikasi Indonesia. PRISMA: Prosiding Seminar Nasional Matematika, 4, 611–620. https://journal.unnes.ac.id/sju/index.php/prisma/
Ayuningtyas, S. J. (2019). PERAMALAN JUMLAH KASUS TUBERKULOSIS DI PROVINSI JAWA TIMUR DENGAN MENGGUNAKAN METODE HYBRID AUTOREGRESSIVE INTEGRATED MOVING AVERAGE – ADAPTIVE NAURO FUZZY INFERENCE SYSTEM (ARIMA – ANFIS) FORECASTING.
Kurniawati, A., & Arima, A. (2021). Analisis Prediksi Harga Saham PT. Astra International Tbk Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA) dan Support Vector Regression (SVR). Jurnal Ilmiah Komputasi, 20(3), 417–423. https://doi.org/10.32409/jikstik.20.3.2732
Prasasti, W. (2022). Peramalan Konsumsi Energi Listrik Dikabupaten Blora Pada Tahun 2022-2025 Menggunakan Metode Autoregressive Integrated …. Simetris, 16(2), 7–15. https://www.sttrcepu.ac.id/jurnal/index.php/simetris/article/view/247%0Ahttps://www.sttrcepu.ac.id/jurnal/index.php/simetris/article/download/247/157
Milniadi, A. D., & Adiwijaya, N. O. (2023). Analisis Perbandingan Model Arima Dan Lstm Dalam Peramalan Harga Penutupan Saham (Studi Kasus : 6 Kriteria Kategori Saham Menurut Peter Lynch). SIBATIK JOURNAL: Jurnal Ilmiah Bidang Sosial, Ekonomi, Budaya, Teknologi, Dan Pendidikan, 2(6), 1683–1692. https://doi.org/10.54443/sibatik.v2i6.798
Ayu Wulandari, R., & Gernowo, R. (2019). Metode Autoregressive Integrared Moving Average (ARIMA) dan Metode Adaptive Neuro Fuzzy Inference System (ANFIS) dalam Analisis Curah Hujan. Berkala Fisika, 22(1), 41–48.
DOI: https://doi.org/10.52626/joge.v4i1.56
Refbacks
- There are currently no refbacks.
St. Teknik II, Reumpet, Krueng Barona Jaya sub-district (23370), Aceh Besar District, Aceh Province, Indonesia.
http://geutheeinstitute.com/