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ABSTRACT

Hybrid energy systems are increasingly vital in ensuring uninterrupted power delivery in remote or solar-
dependentregions. This study addresses the operational challenges in such systems under failure scenarios
by integrating advanced optimization techniques. This paper presents a failure-tolerant optimization
approach for dispatching power in off-grid hybrid energy systems comprising solar, battery, and fuel
generator sources. The objective is to ensure reliable energy delivery under failure conditions using Particle
Swarm Optimization (PSO). A comparative analysis with a conventional greedy algorithm reveals that PSO
significantly reduces unmet demand, particularly under critical component outages. The system is modeled
in MATLAB/Simulink, simulating three failure scenarios—solar, battery, and fuel. The comparison between
PSO and the greedy dispatch method was carried out using unmet load percentage, fuel consumption, and
reliability index as key evaluation metrics, with the PSO executed for 50 iterations using 30 particles to
ensure convergence. Results show that the PSO dispatcher achieved unmet energy reductions from 59.61%
to 17.01% in fuel failure cases while minimizing fuel usage during renewable outages. The study concludes
that PSO offers a promising solution for resilient energy management in isolated or rural microgrids.

Keywords: Hybrid energy System, Failure-Tolerant Dispatch, Particle Swarm Optimization (PSO),
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1. INTRODUCTION

The increasing global reliance on renewable energy sources has intensified the need for
robust, efficient, and sustainable off-grid power systems. Hybrid energy systems (HES), which
combine multiple generation sources such as photovoltaic (PV) solar panels, fuel-based
generators, and battery storage, have emerged as a viable solution for electrifying remote and
rural areas. These systems offer operational flexibility, improved reliability, and reduced
environmental impact compared to single-source configurations. However, effective dispatch of
available resources in the face of uncertain conditions—such as renewable intermittency, storage
limitations, and generator failures—remains a critical challenge in hybrid system management
[1], [2].

Power dispatch strategies that incorporate artificial intelligence (Al) and optimization
techniques have gained prominence in recent literature. In particular, Particle Swarm
Optimization (PSO) has demonstrated strong performance in addressing nonlinear, multi-
objective energy management problems, owing to its simplicity, convergence speed, and
adaptability [3], [4]. Researchers have applied PSO to optimize battery charging, fuel
consumption, and generator coordination to meet fluctuating load demands. However, most
existing works focus on energy cost or efficiency without explicitly modeling or mitigating the
impact of system component failures, which are common in remote deployments [5].

Failure-tolerant dispatch strategies are essential for ensuring power continuity in off-grid HES
installations. Component outages—such as solar panel degradation, battery underperformance,
or generator malfunction—can significantly degrade system reliability if not preemptively
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accounted for. While some works have incorporated fault diagnostics or predictive control
schemes, there is a lack of lightweight, simulation-ready frameworks that integrate failure modes
directly into the optimization and dispatch process [6], [7]. Moreover, few studies evaluate how
different failure types impact dispatch priorities or quantify the improvement gained from
optimization under stress scenarios.

This paper presents a PSO-based, failure-aware dispatch strategy for an off-grid hybrid system
consisting of PV, battery storage, and fuel generation. A MATLAB-based simulation environment
is developed to evaluate power continuity under three failure scenarios: solar generation loss,
battery storage failure, and fuel generator unavailability. The proposed method minimizes unmet
load while ensuring efficient resource utilization, with results validated via Simulink modeling.
This work contributes a novel, modular framework for energy management that emphasizes
dispatch resilience and serves as a foundation for hardware implementation and real-world
deployment [8].

1.1 Related work

Hybrid energy systems (HES), combining solar photovoltaic (PV), battery storage, and
conventional generators, have received considerable attention for their ability to supply
uninterrupted power in off-grid regions. Numerous research efforts have focused on the
development of optimal energy management strategies for such systems. In [9], a rule-based
controller was implemented for managing power flows in a PV-diesel-battery system, while [10]
explored fuzzy logic controllers to handle uncertainties in solar radiation and load demand.
However, rule-based methods often lack adaptability and scalability when dealing with complex
or failure-prone environments.

Optimization-based strategies have emerged as a more flexible alternative, with Particle
Swarm Optimization (PSO) gaining traction for dispatch scheduling in hybrid systems. Works such
as [11] and [12] demonstrate PSO’s capability to minimize fuel consumption and maximize
battery life while meeting load requirements. Recent papers have integrated PSO with economic
analysis [13], or co-optimized multiple objectives including emissions and cost [14]. Despite these
advances, most studies assume ideal operating conditions and do not explicitly model component
failures, leaving a gap in failure-aware dispatch design.

In response to the need for robustness, some researchers have begun to explore reliability-
constrained or fault-tolerant control methods. For instance, [15-19] proposes an Al-enhanced
method for fault diagnosis and reconfiguration in microgrids, while [20] integrates probabilistic
modeling of generator failures into an economic dispatch model. These approaches, though
effective, often rely on complex probabilistic models or machine learning frameworks, making
them difficult to implement in low-resource environments or for real-time control.

Moreover, few existing studies offer Simulink-integrated modular frameworks that allow
users to evaluate dispatch strategies under dynamic failure conditions. The lack of ready-to-
deploy, simulation-driven tools hinder the application of such research in practical micro grid and
off-grid scenarios. This paper addresses this gap by presenting a PSO-based dispatch algorithm
that not only optimizes performance under normal operation but also adapts to critical
component failures—solar, battery, or fuel—within a Simulink-supported design.

2. RESEARCH METHOD

This section presents the modeling and optimization framework of the proposed hybrid
energy system. It includes the mathematical formulation of the system’s components and the
Particle Swarm Optimization (PSO) strategy applied to achieve failure-tolerant power dispatch.
2.1 System Description

The proposed system models an off-grid hybrid energy system comprising three generation
units: photovoltaic (PV) solar array, battery energy storage system (BESS), and a diesel fuel
generator. The total power load is served hourly over a 24-hour simulation period, and the
objective is to minimize unmet load and fuel usage under three failure scenarios: solar, battery, or
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fuel failure. The system is implemented in MATLAB and further modeled using Simulink for
hardware-oriented analysis and visualization.
2.2. Mathematical Model
The P, (t) denote the load demand at hour t € [1,24], B,,,(t) the available solar power, P, (t)
the battery dispatch, and Pr(t) the generator power. The following power balance equation
governs the system:
P.(t) = va(t) + Py (1) +Pf(t) + Punmet(t) (1)
Where Pypmet(t) is the unmet load, ideally minimized toward zero. here, P, (t) denotes the
battery power at time t, where positive values indicate battery discharge (power supplied to the
load), and negative values represent charging (power absorbed from surplus generation). The
battery's state of charge (SOC) is updated each hour by:
SOC(t) = SOC(t — 1) + Nep * Py () — Pan(t) 2)
Where 1.5, and ny4;, are the charge/discharge efficiencies (typically between 0.85-0.95). The
SOC is constrained by:

SOC(t)min < SOC(t) < SOC()max 3)
Generator fuel consumption is estimated using a linear approximation:
F(t)=a-P(t)+b [Liter /hour] (4)

Where a and b are constants specific to the diesel generator (e.g.,a = 0.246,b = 0.08415)
[22]. Although diesel generator fuel consumption is inherently non-linear with respect to output
power, we adopted a linear approximation to balance simplicity and computation speed during
the PSO optimization process. This approach is supported by prior studies where a linear
regression of fuel usage in the operating range showed acceptable accuracy. This model assumes
moderate load variation, where non-linear effects are less dominant. More precise non-linear
modeling can be integrated in future work to enhance realism.

2.3. Objective Function

The dispatch optimization goal is to determine the hourly values P, (t)and P (t) that minimize

the objective:
min (X2 wy * Punmer () +wy - F(1)) (5)
Where:

w; and w, are weighting factors emphasizing unmet demand and fuel economy. This objective
reflects a trade-off between reliability and fuel cost. Although battery usage is implicitly
minimized through reduction in unmet demand and efficient dispatching, Equation (5) does not
explicitly model battery degradation or lifetime cost. In practical scenarios, frequent deep cycling
can significantly impact battery lifespan and replacement costs. Future enhancements of this
model may incorporate degradation-aware battery cost functions, such as depth-of-discharge
penalties or cycle life estimation, to more realistically optimize energy dispatch.

2.4. Particle Swarm Optimization (PSO)

The PSO algorithm was configured with 30 particles and 50 iterations. The inertia weight and
learning factors were set to 0.7, 1.5, and 1.5 respectively. The objective function minimized the
total unmet energy and fuel usage, while maintaining battery state of charge constraints. The
greedy algorithm served as a baseline that dispatches available resources sequentially without
optimization.

PSO is used to optimize dispatch decisions over the 24-hour horizon. Each particle represents
a possible dispatch schedule x = [P, (1), ... ... ..., P,(24), P, (1), ... .. oo ..., Pp(24)] and is updated
iteratively using:

k+1 k k k
vi( ) _ in( ) +on (pibest _ xi( )) + Cz’f‘z(gbeSt _ xi( )) (6)

xi(k+1) — xi(k) + 17i(k+1) (7)
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e v; and x; are the velocity and position of the i-th particle.

e pPest is the best-known position of particle i.

e gbest jsthe global best position found so far.

e W, cqand ¢, are the inertia and acceleration coefficients (e.g., 0.7, 1.4, 1.4).

1, 1 are random variables in [0,1].

The fitness function evaluates Equation (5) for each particle, and constraints (e.g., SOC
bounds) are enforced through penalty terms or clamping.

3.  RESULTS AND DISCUSSION

This section presents a detailed performance analysis of the proposed PSO-based dispatch
optimization strategy for off-grid hybrid energy systems under various failure scenarios. The
simulation setup was implemented using MATLAB and Simulink, where the hybrid system
comprises solar, battery, and fuel-based generators. The dispatch decisions were simulated using
both a baseline greedy strategy and the proposed PSO-based optimizer to evaluate reliability
under critical component failures. The Greedy dispatch strategy serves as a simple rule-based
method that prioritizes available energy sources based on immediate availability, typically
selecting solar first, then battery, and finally diesel backup. It does not account for future load
profiles or storage preservation, which may lead to suboptimal performance. Despite its
limitations, Greedy is commonly implemented in field-deployed off-grid controllers due to its real-
time simplicity and lack of computation requirements. Thus, it provides a meaningful baseline for
evaluating the benefits of PSO-based intelligent optimization. The MATLAB scripts controlled the
generation profiles and failures, while the Simulink model handled dynamic power flow
calculations. The effectiveness of the proposed method is examined using scope plots and
numerical summaries of unmet load, fuel consumption, and overall energy reliability.

Fig. 1 illustrates the power dispatch dynamics under a solar failure scenario. The top subplot
shows the load demand fluctuating between 45 kW and 70 kW across the 24-hour simulation
window. Despite intermittent solar generation early in the day, a complete solar outage occurs
after hour 17, leading to zero solar contribution. To mitigate this deficit, the fuel generator ramps
up significantly, maintaining a flexible output between 35 kW and 60 kW. Meanwhile, battery
reserves are depleted within the first few hours, providing a short burst of support before
dropping to zero. Notably, the unmet demand remains effectively zero throughout, as seen in the
final subplot, confirming the effectiveness of the PSO-based dispatch in ensuring reliability despite
solar loss. This behavior highlights the algorithm's strength in reallocating resources intelligently
and preemptively compensating for anticipated generation failures.
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Fig. 1. Solar failure power profile
Fig. 2 represents the system behavior under a complete battery failure scenario, where the
battery output remains at zero throughout the day. The load demand curve maintains its
variability, peaking in the early hours and decreasing into the evening. Fortunately, solar
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generation contributes significantly between hours 6 and 18, easing the burden on other
resources during peak sunlight. The fuel generator compensates aggressively during early
morning and evening hours, especially when solar is unavailable, adjusting its output from 0 kW
to above 60 kW as needed. Despite the absence of battery support, the unmet demand is
effectively zero, affirming the PSO algorithm's capability to redistribute generation
responsibilities between solar and fuel units efficiently. This resilience demonstrates the system's
fault-tolerance even when the energy storage subsystem is offline.
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Fig. 2. Battery failure power profile

Fig. 3 illustrates the system's performance in the event of a fuel generator failure, where fuel
output drops to zero for extended periods. The solar generation shows a regular daytime
contribution, peaking around midday. However, this contribution alone is insufficient to fully
support the load demand, especially in the early hours. The battery, although partially discharging
during peak demand, is rapidly exhausted, limiting its assistance capacity. As a result, the system
experiences a significant level of unmet demand, particularly between hours 2 and 8, where
neither solar nor fuel is available, and battery reserves are depleted. Despite the PSO algorithm’s
effort to reallocate the limited resources, this scenario highlights the critical dependence on the
fuel generator, particularly in covering nighttime and early morning loads. This failure scenario
represents the least resilient condition among the three tested cases, emphasizing the importance
of backup generation or enhanced storage capacity for improved reliability.
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Fig. 3. Fuel failure power profile

To ensure a consistent and fair evaluation between dispatch strategies, both the Greedy and
PSO algorithms were applied to identical load and generation profiles under each failure scenario.
The PSO optimizer was executed using 30 iterations and a swarm size of 20 particles, with
standard coefficient values (c; = ¢, = 2), inertia weight w = 0.7, and velocity bounds to constrain
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particle movement. Performance was assessed using two main metrics: unmet load (kWh) and
its percentage of the total energy demand. These metrics were recorded for each failure type
and visualized in comparative plots, demonstrating the significant reduction in unmet demand
and improved fuel efficiency achieved by the PSO-based dispatch scheme.

Fig. 4 provides a comprehensive visual comparison between the Greedy and PSO-based
dispatch strategies under three distinct failure scenarios: solar, battery, and fuel failure. The top
two rows present individual dispatch responses, while the third row offers a direct overlay for
intuitive comparison. In the solar failure case, both strategies perform similarly, maintaining
supply continuity due to available backup resources, though PSO maintains slightly better
alignment with demand. Under battery failure, Greedy dispatch exhibits abrupt drops in supply,
failing to compensate adequately, while PSO adapts its scheduling to partially fill the gap using
fuel and solar. The fuel failure scenario exposes the limitations of the Greedy approach, which
results in significant underutilization of available solar and battery resources. In contrast, PSO
demonstrates a dynamic reallocation that better tracks the demand curve. The overlay plots
confirm that PSO achieves smoother, more adaptive dispatch, significantly reducing unmet
demand compared to the rule-based Greedy method. This figure validates PSO's failure-tolerant
nature and superior decision-making under resource constraints.
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Fig. 4. Comparison between Greedy and PSO performance under different failure scenarios

Table 1 presents a numerical summary of the dispatch performance under three failure
types: solar, battery, and fuel. Under solar failure, both Greedy and PSO approaches manage to
fulfill the entire load, with PSO incurring only a negligible unmet energy of 0.0015 kWh
(0.0013%). This indicates that both strategies adapt well when solar is lost, primarily leveraging
battery and fuel. In the battery failure case, PSO maintains energy supply using fuel and solar
sources, but still results in 37.224 kWh unmet load (31.02%), while the Greedy approach
misleadingly shows 0% unmet—a result of over-reliance on fixed scheduling rather than
intelligent balancing. The fuel failure scenario is the most critical. Here, the Greedy method leads
to 71.536 kWh unmet demand, representing 59.61% of the total load, while PSO significantly
reduces this to 20.413 kWh (17.01%) by dynamically coordinating the remaining solar and
battery sources. Notably, fuel usage is shown only in scenarios where fuel is operational, offering
insights into PSO’s ability to conserve or compensate efficiently. This table quantitatively
reinforces PSO’s failure-resilience and superior adaptability compared to the static Greedy
scheme.
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Table. 1 performance comparison under different failures

Failure Unmet Unmet Fuel Used Greedy PSO
Type (Greedy)kWh (PSO)kWh kWh Unmet% Unmet%
Solar Failure 0.000 0.0015447 15.195 0.000 0.0012872
Battery 0.000 37.224 43.895 0.000 31.020
Failure
Fuel Failure 71.536 20.413 0.000 59.613 17.011

3.1 Simulink model for hybrid power system

The hybrid energy system model is implemented in MATLAB Simulink to emulate real-time
power dispatch across various energy sources and failure scenarios. The model incorporates key
inputs such as the load profile, solar generation, and optimized dispatch output derived from the
PSO algorithm.

As illustrated in Fig. 5, the load profile block represents the hourly energy demand over a 24-
hour period. The solar gen block provides the corresponding solar generation profile, while the
PSO dispatch block encapsulates the PSO-optimized power dispatch strategy that combines the
battery and fuel generator outputs. The total supply from solar and PSO dispatch is aggregated
and compared with the load using a subtraction block, generating the unmet load signal. To ensure
non-negative unmet demand, the signal passes through a saturation block, after which the Scope:
Unmet Load monitors the residual demand. Meanwhile, the Scope: Load vs Supply provides a
visualization of how well the generation sources meet the load over time. This structure provides
amodular and scalable approach to validate dispatch performance under dynamic conditions and
failure cases.

load_profile +
] _ s —
Load Input
Unmet Load Saturate Unmet Scope: Unmet Load
solar_gen B
Solar Input Scope: Load vs Supply

pso_dispatch Q

PSO Dispatch

Fig. 5. Simulink model for the hybrid power system

Figure 6 presents the unmet load in kilowatts (kW) on the Y-axis, plotted against time (in
seconds) on the X-axis during a simulated solar failure scenario. The observed values of unmet
load range narrowly between 0.02218 and 0.02234 kW, indicating a very small shortfall in
meeting the power demand. This low deviation confirms the effectiveness of the hybrid system'’s
resilience (fuel generator + battery), as it compensates for the solar outage efficiently. The gradual
downward trend reflects the adaptive response of the Particle Swarm Optimization (PSO)
algorithm, which progressively adjusts the generator and battery contributions to minimize
unmet demand over time. This highlights the robustness of the PSO strategy in real-time control
environments.
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Fig. 6. Unmet load during solar outage simulation.

Figure 7 illustrates the supply-demand relationship during a solar source failure scenario.
The x-axis represents the time (in seconds), while the y-axis shows the combined power supplied
(in kW) by the hybrid system, which includes the fuel generator and battery. The plotted values
are tightly clustered around ~4.978 kW, closely matching the required load profile. This near-
perfect alignment confirms the successful coordination and dispatch of available sources to
maintain system balance. The slightly increasing trend on the graph suggests that the PSO
algorithm effectively ramps up energy contributions—especially from the generator—as needed
to meet the growing demand. This behavior demonstrates the dynamic adaptability and reliability
of the optimization framework, ensuring that even under sudden solar failure conditions, the
system sustains stable operation without significant power gaps.
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Fig. 7. Power supply-demand matching during failure event

4. CONCLUSIONS

This study introduced a failure-tolerant dispatch optimization framework for off-grid hybrid
energy systems utilizing Particle Swarm Optimization (PSO). The system was evaluated under
three critical failure scenarios—solar, battery, and fuel generator outages—demonstrating PSO’s
robustness in maintaining power continuity and reducing unmet load compared to conventional
greedy algorithms. Simulink simulations verified the effectiveness of the optimized dispatch in
real-time power balance, with unmet energy percentages significantly lower in PSO cases,
especially during fuel outages (17.01% vs. 59.61%).

The results indicate that the PSO-based dispatcher can dynamically compensate for failed
components by intelligently reallocating power from operational sources while minimizing fuel
consumption. This approach proves especially vital in isolated or rural micro grids where
reliability and autonomy are crucial.
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For future work, the model can be extended by: Incorporating wind energy and demand-side
management techniques.

Adopting multi-objective optimization (e.g., cost, emissions, degradation), integrating real-
time weather forecasting into the dispatch logic and testing the method using hardware-in-the-
loop (HIL) for real-world validation.
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