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ABSTRACT  

 
Advances in artificial intelligence (AI) technology today have a significant impact in various aspects of 
human life. One example is the evolution of robotics that has achieved the ability to follow human 
movements. To achieve this, AI technology utilizes image recognition through Computer Vision and the 
Human Pose Estimation method with the help of the BlazePose library, which is able to recognize 33 
keypoints in human body poses. Research in this area aims to develop an automatic control system that can 
be used on inspection carts, enabling them to follow human body movements while walking. The results 
showed a detection accuracy rate of 84.82% with an optimal detection distance between 4 to 8 meters from 
the camera, with an average detection accuracy of 89.862%. On the motor control aspect, the system is set 
to turn off the motor when the distance between the device and the object is in the range of 1-2 meters, and 
turn it on at a distance of 3-12 meters. However, it is important to note that the accuracy achieved is greatly 
affected by the color segmentation capabilities of the software, the lighting conditions in the environment, 
as well as the resolution of the camera used. 
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ABSTRAK  

 
Kemajuan teknologi kecerdasan buatan (AI) saat ini memiliki dampak yang signifikan dalam berbagai 
aspek kehidupan manusia. Salah satu contohnya adalah evolusi robotika yang telah mencapai kemampuan 
untuk mengikuti gerakan manusia. Untuk mencapai ini, teknologi AI memanfaatkan image recognition 
melalui Computer Vision dan metode Human Pose Estimation dengan bantuan BlazePose library, yang 
mampu mengenali 33 keypoints dalam pose tubuh manusia. Penelitian dalam bidang ini bertujuan untuk 
mengembangkan sistem kontrol otomatis yang dapat digunakan pada kereta inspeksi, memungkinkan alat 
tersebut untuk mengikuti manusia saat berjalan. Hasil penelitian menunjukkan tingkat akurasi deteksi 
sebesar 84,82% dengan jarak optimal deteksi antara 4 hingga 8 meter dari kamera, dengan rata-rata 
akurasi pendeteksian mencapai 89,862%. Pada aspek pengendalian motor, sistem ini diatur untuk 
mematikan motor saat jarak antara alat dan objek berada pada kisaran 1-2 meter, dan menghidupkannya 
pada jarak 3-12 meter. Namun, penting untuk mencatat bahwa akurasi yang dicapai sangat dipengaruhi 
oleh kemampuan segmentasi warna dari perangkat lunak, kondisi pencahayaan di lingkungan, serta 
resolusi kamera yang digunakan. 
 
Kata kunci: kereta inspeksi; visi komputer; human pose estimation. 
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1. INTRODUCTION  
Motion capture has been a topic of interest in several studies. One of the applications of 

motion capture techniques is in human pose estimation. Before many studies adopt the 
marker-less approach for human pose estimation, a number of studies still used markers to 
generate human skeletons. 

Optical motion is one of the tools used to generate human skeleton structures, with motion 
capture results that have a higher level of accuracy. However, optical motion has limitations in 
terms of practically, as it requires the intended user to wear clothing that has markers. Lately, 
an increasing number of researchers have been focusing on this trending subject. 

In addition to optical motion, some studies have also used Kinect devices. However, 
sometimes in its use, the Kinect device faces challenges in obtaining the human skeleton 
structure (Liu et al., 2016). This arises do to self-occlusions (concealment of joints by other 
body parts) and also errors that may come from the Kinect sensor itself, because Kinect devices 
are basically intended for consumers, so the level of accuracy and reliability tends to be lower.  

Lately, an increasing number of researchers have been focusing on this trending subject 
of marker-less motion capture, from an algorithmic standpoint. Marker-less motion capture 
can be divided into two primary categories, discriminative approaches and generative 
approaches (Chao, 2016).  

Discriminative approaches utilize data-driven machine learning techniques to transform 
the motion capture challenge into a regression or pose classification task (Hong, 2016), making 
them suitable for applications involving human-computer interaction where efficiency 
outweighs precision. On the other hand, in the context of generative approaches for motion 
capture, the ultimate objective is to determine the body’s pose and shape, achieved by fitting 
the model to information extracted from images. These methods can generate a series of model 
parameters like body shape, bone lengths, and joint angles. In contrast to discriminative 
approaches, generative methods typically rely on temporal data and address a tracking 
problem. This trend is being developed continuously. Human pose estimation provides human 
joint information where each key point in humans can be used for robot and human interaction. 

In (Cheng, 2021), built a modular interactive framework based on RGB images, which aims 
to overcome the problems of high dependence on depth cameras and limited distance 
adaptation in existing human-robot interaction frameworks. However, most of the existing 
mainstream methods still rely on depth cameras to obtain human joint information. Existing 
interaction frameworks are affected by the infrared detection distance and thus cannot 
properly adapt to a variety of different interaction distance. 

As human pose estimation is always evolving, its scope is expanding to include approaches 
that utilize data-drive. Research by (Ming-Hwa et al., 2023), deep learning has undergone rapid 
development. The use of deep learning covers various field, one of which is human pose 
estimation. The need to improve accuracy in human pose estimation is also growing, and there 
are several challenges to overcome. Firstly, how to get the right human pose estimation 
considering different clothing variations, body shape, variations, and pose variations that may 
occur. In addition, there is a demand to obtain effective human pose estimation even when 
applied to many individuals at once. 

As we know, BlazePose is an instant human pose detection method capable of recognizing 
human poses in images or videos. It functions in a single-mode setup, catering to the detection 
of a single human pose. In simple terms, BlazePose is a sophisticated deep learning model that 
permits the estimation of human pose through the identification of body segments like elbows, 
hips, wrists, knees, and ankles. These segments are interconnected to form a skeletal structure 
that depicts the pose. This model is designed to be efficient, utilizing depth-wise separable 
convolution to enhance network depth, minimize parameters and computational load, and 
enhance accuracy. BlazePose provides a comprehensive collection of 33 keypoints, covering 
areas ranging from the nose to the left foot index. 

From some existing research, the input of this research in the form of a single view from 
fixed position view, and simultaneously taking the object. From the camera view it proceeds to 
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the 2D joint location detection process. The camera calibration process is needed to obtain the 
intrinsic and extrinsic features of the camera. With these features and the result of 2D joint 
location, we get 3D human pose estimation using BlazePose approach. 

In this research area, the researchers integrated a human pose estimation system into a 
transport system as a supporter of the inspection process on the railway, which we often know 
as an inspection train. This interaction mimics the interaction between humans and robots, but 
the scope is at the transport level. This design system follows human movement based on 
human pose estimation along the railway track. 

 
2. RESEARCH METHOD  

The pipeline in this human pose estimation based on BlazePose system mainly includes 
four stages, as shown in Figure 1. 

 
Figure 1. The pipeline in human pose estimation. 

 
The first stage is motion capture using a camera device, where this device acts as the input 

and output of BlazePose-based human pose estimation. That second is the use of machine 
learning, which will lead to the architecture of BlazePose itself. In BlazePose there are two 
types of machine learning used, namely estimators and detectors. The third stage is joint 
detection based on 33 predefined keypoints that are marker-less motion capture referring to 
the Vitruvian Man model.  

 
A. Human Model 

Our human body model consists of kinematic ‘skeletons’ of articulated joints 
controlled by angular joint parameters 𝑥𝑎, covered by ‘flesh’ built from superquadric 
ellipsoids with additional tapering and bending parameters. A typical model has 
around 33 joint parameters, plus internal proportion parameters 𝑥𝑖 encoding the 
position of the hip, clavicle and skull tip joints, plus 9 deformable shape parameters for 
each body part, gathered into a vector 𝑥𝑑. The state of a complete model is thus given 
as a single parameter vector 𝑥 = (𝑥𝑎, 𝑥𝑖 , 𝑥𝑑). We note, however, that only joint 
parameters are typically estimated during object localization and tracking, the other 
parameters remaining fixed.  

 
B. Parameter Estimation 

We aim towards a probabilistic interpretation and optimal estimates of the model 
parameters by maximizing the total probability according to Bayes rule: 

 
𝑝(𝑥|𝑟̅)  𝑝(𝑟̅|𝑥)𝑝(𝑥) = exp{−(𝑒𝑎 + 𝑒𝑠)}  𝑝(𝑥)                                                             (1) 
The above formulation reflects a Bayesian approach where our prior knowledge of 

the human pose parameters (p(x)) is updated based on the observed data (r̅) to obtain 
a more accurate estimate (p(x│r̅)). This approach provides a probabilistic framework 



JG  Adiratna C, Wahyu P, Dirvi E.J, Rakhmad G, Edo Z.F. ║ 

 

ISSN: 2964-2655 

109 

to approach human pose estimation and maximize the probability of fitting those 
parameters to the acquired data. 

p(r̅│x) is the probability distribution of the observed data or information we have about 

the human pose (r̅), given the parameters (x) used to describe the pose. It measures the degree 

to which those parameters match the observed data. 

In this context, 𝑒𝑎  and 𝑒𝑠  can be interpreted concretely as activation energy and error 

energy, respectively. The activation energy reflects the extent of complexity or cost in 

determining the human pose parameters, while the error energy measures the degree to which 

the parameters do not match the observed data. In this framework, we are committed to 

optimizing the total energy 𝑒𝑎  and 𝑒𝑠  to fully match the available data. 

 

C. Observation Maximum Likelihood Estimation 

In the context of parameter estimation, the likelihood is naturally viewed as function of 

the parameters . The joint probability of a set observations, conditioned on a choice for -

repeated here: 

 

𝐿𝑖𝑘(; 𝑦) 𝑃(𝑦|)                                                                 (2) 

 

Since good predictions are better, a natural approach to parameter estimation is to choose 

the set of parameter values that yields the best predictions—that is, the parameterthat 

maximize the likelihood of the observed data. This value is called the Maximum Likelihood 

Estimate (MLE), defined formally as: 

 

𝑀𝐿𝐸  ̂ =  𝑎𝑟𝑔 𝑚𝑎𝑥 𝐿𝑖𝑘 (; 𝑦)                                                 (3) 

 

In nearly all cases, the MLE is consistent (Cramer, 1964), and gives intuitive results. In 

many common cases, it is also unbiased. For estimation of multinomial probabilities, the MLE 

also turns out to be the relative-frequency estimate. Figure 2 visualizes an example of this. The 

MLE is also an intuitive and unbiased estimator for the means of normal and Poisson 

distributions. 

 
Figure 2. The likelihood function for the binomial parameter  for observed data where 𝑛 =

 10 and  𝑚 =  10. The MLE is the Relative Frequency Estimate (RFE) for the binomial 
distribution. Note that this graph is not a probability density and the area under the curve is 

much less than 1. 
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D. BlazePose as the Input and Output 

The input is either a real-time video capture. The region in the video frame where a person 

has been detected. Represented as a 2562563 array with aligned whole human body, 

centred on the middle of the hip in vertical body pose and rotation distance (-10,10). The 

channel order RGB with values in [0, 0, 1, 0]. The breakdown of the process can be seen in 

Figure 3. 

  
Figure 3. BlazePose keypoints. 

 
The outputs include a 335 tensor corresponding to the screen-projected keypoints (x, y, z, 

visibility, presence), a 333 tensor corresponding the metric scale coordinates of the 3D world 
(world x, world y, world z), and a scalar in the range [0.0 ; 1.0] corresponding to presence indicating 
the probability of a person being present on a passed image. 

 
E. BlazePose Architecture 

BlazePose consist of two machine learning models, a detector and an estimator. The 

detector cuts out the human region from the input image, while the estimator takes a 256256 

resolution image of the detected person as input and outputs the keypoints. The detector is an 

Single-Shot Detector (SSD) based architecture. There are two ways to use the detector. In box 

mode, the bounding box is determined from its position (𝑥, 𝑦) and size (𝑤, ℎ). In alignment 

mode, the scale and angle are determined from (𝑘𝑝1𝑥, 𝑘𝑝1𝑦) and (𝑘𝑝2𝑥, 𝑘𝑝2𝑦), and bounding 

box including rotation can be predicted. The estimator uses heatmap for training, but computes 

keypoints directly without using heatmap for faster inference. 
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Figure 4. Tracking network architecture of regression with heatmap supervision. 

The first output estimator is (1, 195) landmarks, the second output is (1, 1) flags. The 
landmarks are made of 165 elements for the (x, y, z, visibility, presence) for every 33 keypoints. 
The z-values are based on the person’s hips, with keypoints being between the hips and the 
camera hen the value is negative, and behind the hips when the value is positive.  

The visibility and presence are stored in the range of [min_float, max_float] and are 

converted to probability by applying a sigmoid function. The visibility returns the probability 

of keypoints that exist in the frame. 

 

F. Rail Inspection System 

The design of this system uses distance detection and human pose estimation captured by 

a webcam camera then programming is carried out using the BlazePose method and forwarded 

to the ESP32 microcontroller, after which it is connected to the PLC using Modbus RS485 

communication as TX and RX inputs, while the Rotary Encoder which is a speed sensor is 

connected to the PLC at input address S8 which has a High-Speed Counter function. 

The two inputs will be processed using a PID controller which is output in the form of a 

PWM signal. The PWM signal issued by the PLC at R7 is then converted by the PWM to Voltage 

module and forwarded to the BLDC Motor Controller. The voltage entering the BLDC Motor 

Controller will be processed and forwarded to the BLDC Motor to adjust the motor speed. The 

48V 10Ah Lithium Ion Battery is used as the main power source of the BLDC Motor Controller 

and BLDC Motor which enters the battery socket on the BLDC Motor Controller. The system 

can be seen in Figure 5. 
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Figure 5. Integrating system to rail inspection. 

 
 

3. RESULTS AND DISCUSSION  
From this research, the results of estimating the human body using BlazePose are obtained. 

However, the results of this research will be divided into two categories. The first category is 
the result of human pose estimation using BlazePose by validating the keypoints value 
obtained. And the second, bread on the scope of integration of the human pose estimation 
system for rail inspection. 

To evaluate model, researchers checked the coordinates of 33 keypoints (x, y, z). The result 
of the 3D projection can be seen in Table 1. 

Table 1: The result of 3D projection. 

ID Joints Pixel 
Image Projection 

x y z 
0. Nose 564 0.537945 0.228714 -0.7999144 
1. Left eye (inner) 565 0.469518 0.190116 -0.530800 
2. Left eye 566 0.463484 0.178852 -0.564803 
3. Left eye (outer) 567 0.450156 0.173961 -0.478437 
4. Right eye (inner) 568 0.441001 0.172332 -0.396517 
5. Right eye 569 0.413222 0.157255 -0.340979 
6. Right eye (inner) 570 0.410556 0.152512 -0.292190 
7. Left ear (inner) 571 0.404946 0.151231 -0.302297 
8. Right ear (inner) 572 0.404004 0.152843 -0.282213 
9. Mouth (left) 573 0.398666 0.149637 -0.257025 

10. Mouth (right) 574 0.397440 0.148363 -0.261147 
11. Left shoulder 575 0.398961 0.145511 -0.322533 
12. Right shoulder 576 0.401024 0.141420 -0.334692 
13. Left elbow 577 0.404488 0.134825 -0.329674 
14. Right elbow 578 0.404458 0.132088 -0.335903 
15. Left wrist 579 0.404410 0.130728 -0.332628 
16. Right wrist 580 0.405184 0.128445 -0.369504 
17. Left pinky 581 0.405475 0.127273 -0.379874 
18. Right pinky 582 0.406179 0.126494 -0.323348 
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19. Left index 583 0.406843 0.126528 -0.297850 
20. Right index 584 0.407295 0.126410 -0.276154 
21. Left thumb 585 0.407344 0.125873 -0.213827 
22. Right thumb 586 0.407805 0.125554 -0.253524 
23. Left hip 587 0.411940 0.123076 -0.293951 
24. Right hip 588 0.415726 0.121805 -0.323780 
25. Left knee 589 0.418729 0.121242 -0.372628 
26. Right knee 590 0.420105 0.120559 -0.362168 
27. Left ankle 591 0.421403 0.118802 -0.326854 
28. Right ankle 592 0.421945 0.117704 -0.312582 
29. Left heel 593 0.423139 0.115538 -0.365676 
30. Right heel 594 0.423489 0.114297 -0.372545 
31. Left foot index 595 0.424299 0.113465 -0.376875 
32. Right foot index 596 0.425115 0.112725 -0.372456 

 
The coordinate results from the 3D projection are then validated to determine whether 

the point in the human pose estimation is in accordance with the joint keypoint. This can be 
seen in Figure 6.  

 

 
Figure 6. Result of 2D human pose estimation keypoints. 

 
It can be seen that the keypoints in Figure 6 include several points in the face and chest area. 
The results of the taping can be seen in Table 2. These results are stated to be in accordance 
with the reference keypoints index. 
 

Table 2: Keypoints validation of 2D human pose estimation keypoints. 
ID Joints Pixel 
0. Nose 564 
1. Left eye (inner) 565 
2. Left eye 566 
3. Left eye (outer) 567 
4. Right eye (inner) 568 
5. Right eye 569 
6. Right eye (inner) 570 
9. Mouth (left) 573 
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10. Mouth (right) 574 
 
After the design system has been matched with the keypoints, the human pose estimation is 
then integrated with the rail inspection system through the motor, which further regulates the 
range distance, so that the system will get information on the optimum joint distance. The 
system will manage the rail inspection in which direction to move through the human 
movement on the rail track. If a good estimation of the human body is detected (in standing 
condition) then the motor condition is on, and landmarks are detected. If the inspection 
direction is backward, the direction will be reverse. Conversely, if the inspection direction is 
forward, the direction will be forward. 

Table 3: Integrating motor to system based on poses. 
Motor Condition All Landmarks Direction 

ON Detected Reverse 
OFF Undetected Reverse 
ON Detected Forward 
OFF Undetected Forward 

 
 

 
Figure 7. Motor condition is ON, overall landmark is DETECTED, direction is REVERSE. 

 

 
Figure 8. Motor condition is OFF, overall landmark is UNDETECTED, direction is REVERSE. 
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Figure 9. Motor condition is ON, overall landmark is DETECTED, direction is FORWARD. 

 

 
Figure 10. Motor condition is OFF, overall landmark is UNDETECTED, direction is FORWARD. 
 

The results of the integration provide information on the optimal coverage distance for rail 
inspection of objects (human poses). In this condition, the researcher uses a distance of 1-12 
meters, where this distance is the optimal range based on triangulation (image projection). In 
addition, this distance can estimate the object detection range which is useful for activating the 
motor status. 

Table 4: Optimal distance accuracy and motor activation conditions. 

Distance (Meters) Accuracy (%) MSE Loss Motor Status 

1 58.82 491.438 OFF 
2 75.09 208.707 OFF 
3 86.39 448.716 ON 
4 93.85 171.128 ON 
5 90.52 544.836 ON 
6 78.42 812.601 ON 
7 92.64 394.725 ON 
8 93.88 249.118 ON 
9 89.3 346.738 ON 

10 86.33 407.657 ON 
11 83.27 234.755 ON 
12 89.33 340.036 ON 
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In Table 4, it can be seen and analysed that the ideal distance for the system to detect and 

state the motor ON is at a distance of 4, 5, 7, and 8 metres. It indicates that the graph with the 
the fourth cluster of distances condition shows a good initialisation between frame count and 
accuracy compared to the other distances. However, in the initialisation condition or at a 
distance of 1 meter and 2 meters the motor status is OFF. It happens that the detection of 
human pose estimation is too close to the distance of the camera, and the range of the camera 
still cannot see the position of the rail. The results of the distance accuracy graph from 1 metre 
to 12 metres can be seen in the following figure. 
 

  
(a).  Accuracy graph with a distance of 1 

metre. 
(b).  Accuracy graph with a distance of 2 

metre. 
  

  
(c).  Accuracy graph with a distance of 3 

metre. 
(d).  Accuracy graph with a distance of 4 

metre. 
  

  
(e).  Accuracy graph with a distance of 5 

metre. 
(f).  Accuracy graph with a distance of 6 

metre. 
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(g).  Accuracy graph with a distance of 7 
metre. 

(h).  Accuracy graph with a distance of 8 
metre. 

  

  
(i).  Accuracy graph with a distance of 9 

metre. 
(j).  Accuracy graph with a distance of 10 

metre. 

  

  
(k).  Accuracy graph with a distance of 11 

metre. 
(l).  Accuracy graph with a distance of 12 

metre. 
  

Figure 9. Graphical results of accuracy against distance. 
 
 
4. CONCLUSION  

The technique of using computer vision as an automatic control system of the BLDC 
Motor-driven inspection cart is able to generate numerical values of the pixel values of the 
keypoints, the accuracy level, and also the coordinates of the keypoints. 

The use of human pose estimation using BlazePose is used to be able to detect human 
optical motion gestures so that decisions can be obtained when humans are walking and 
humans are not walking which will be recognized through validation of the keypoints values 
obtained which will then be integrated with the control system of the inspection train where if 
the human is identified as walking then the system will turn on the motor so that the motor is 
ON, while if the human is identified as silent then the motor is OFF or does not turn on. 

The distance accuracy rate obtained from this detection is the optimal detection 
distance of 12 meters from the camera with the most optimal accuracy in the range of 4-8 
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meters from the camera with an average detection accuracy rate of 89.862%. While the lowest 
level of accuracy is found at a distance of 1-2 meters from the camera so that in this condition 
results in decision making The motor does not turn on. 

From all the tests carried out so that the results obtained the total detection accuracy 
rate of 84.82% and the motor will OFF in the range of 1-2 meters then the motor will ON in the 
range of 3-12 meters. This level of accuracy is highly dependent on the color segmentation 
capabilities of the program that has been created, room lighting conditions, and the level of 
camera resolution used. The level of accuracy is also influenced by how many test samples are 
carried out so that the system is tested in detail. 
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